TPSS notes
Kinetic energy density
Inside the augmentation sphere of atom \(a\) (\(r<r_c^a\)), we have:
\[\psi_{\sigma\mathbf{k}n}(\mathbf{r}) =
\sum_i
\phi_i^a(\mathbf{r})
\langle\tilde{p}_i^a | \tilde{\psi}_{\sigma\mathbf{k}n} \rangle.\]
The kinetic energy density from the valence electrons will be:
\[\frac{1}{2}
\sum_{\mathbf{k}n} f_{\sigma\mathbf{k}n} \sum_{i_1i_2}
\langle \tilde{\psi}_{\sigma\mathbf{k}n} | \tilde{p}_{i_1}^a \rangle
\langle \tilde{p}_{i_2}^a | \tilde{\psi}_{\sigma\mathbf{k}n} \rangle
\mathbf{\nabla}\phi_{i_1}^a \cdot \mathbf{\nabla}\phi_{i_2}^a =
\frac{1}{2}
\sum_{i_1i_2} D_{\sigma i_1i_2}^a
\mathbf{\nabla}\phi_{i_1}^a \cdot \mathbf{\nabla}\phi_{i_2}^a.\]
Here, we insert \(\phi_i^a(\mathbf{r})=Y_L\phi_j^a(r)\) and use:
\[\mathbf{\nabla}\phi_i^a(\mathbf{r}) =
\mathbf{\nabla}Y_L \phi_j^a(r) +
Y_L \frac{d \phi_j^a}{dr} \mathbf{r} / r,\]
to get:
\[\mathbf{\nabla}\phi_{i_1}^a \cdot \mathbf{\nabla}\phi_{i_2}^a =
\mathbf{\nabla}Y_{L_1} \cdot \mathbf{\nabla}Y_{L_2}
\phi_{j_1}^a(r) \phi_{j_2}^a(r) +
Y_{L_1} Y_{L_2}
\frac{d \phi_{j_1}^a}{dr} \frac{d \phi_{j_2}^a}{dr}.\]
Similar equations hold for the pseudo kinetic energy density.