NEB calculations parallelized over images
The Surface diffusion energy barriers using the Nudged Elastic Band (NEB) method example can be used with GPAW like this:
from ase.io import read
from ase.constraints import FixAtoms
from ase.mep import NEB
from ase.optimize import BFGS
from gpaw.mpi import rank, size
from gpaw import GPAW
initial = read('initial.traj')
final = read('final.traj')
constraint = FixAtoms(mask=[atom.tag > 1 for atom in initial])
n = size // 3 # number of cpu's per image
j = 1 + rank // n # my image number
assert 3 * n == size
images = [initial]
for i in range(3):
ranks = range(i * n, (i + 1) * n)
image = initial.copy()
if rank in ranks:
calc = GPAW(mode='fd',
h=0.3,
kpts=(2, 2, 1),
txt=f'neb{j}.txt',
communicator=ranks)
image.calc = calc
image.set_constraint(constraint)
images.append(image)
images.append(final)
neb = NEB(images, parallel=True, climb=True)
neb.interpolate()
qn = BFGS(neb, logfile='qn.log', trajectory='neb.traj')
qn.run(fmax=0.05)
If we run the job on 12 cpu’s:
$ mpiexec -np 12 gpaw python neb.py
then each of the three internal images will be parallelized over 4 cpu’s.
The results are read with:
$ ase gui neb.traj@-5:
The energy barrier is found to be ~0.3 eV for LDA.