Eigenvalues of core states
Calculating eigenvalues for core states can be useful for XAS, XES and core-level shift calculations. The eigenvalue of a core state \(k\) with a wave function \(\phi_k^a(\mathbf{r})\) located on atom number \(a\), can be calculated using this formula:
\[\epsilon_k = \frac{\partial E}{\partial f_k} =
\frac{\partial}{\partial f_k}(\tilde{E} - \tilde{E}^a + E^a),\]
where \(f_k\) is the occupation of the core state. When \(f_k\) is varied, \(Q_L^a\) and \(n_c^a(r)\) will also vary:
\[\frac{\partial Q_L^a}{\partial f_k} =
\int d\mathbf{r} Y_{00}
[\phi_k^a(\mathbf{r})]^2 \delta_{\ell,0} = Y_{00},\]
\[\frac{\partial n_c^a(r)}{\partial f_k} =
[\phi_k^a(\mathbf{r})]^2.\]
Using the PAW expressions for the energy contributions, we get:
\[\frac{\partial \tilde{E}}{\partial f_k} =
Y_{00}
\int d\mathbf{r}
\int d\mathbf{r}'
\frac{\tilde{\rho}(\mathbf{r}')
\hat{g}_{00}^a(\mathbf{r} - \mathbf{R}^a)}
{|\mathbf{r} - \mathbf{r}'|}
=
Y_{00}
\int d\mathbf{r}
\tilde{v}_H(\mathbf{r})
\hat{g}_{00}^a(\mathbf{r} - \mathbf{R}^a),\]
\[\frac{\partial \tilde{E}^a}{\partial f_k} =
Y_{00}
\int_{r<r_c^a}d\mathbf{r}
\int_{r'<r_c^a}d\mathbf{r}'
\frac{\tilde{\rho}^a(\mathbf{r}')
\hat{g}_{00}^a(\mathbf{r}) }
{|\mathbf{r} - \mathbf{r}'|}\]
\[\frac{\partial E^a}{\partial f_k} =
-\frac{1}{2}
\int d\mathbf{r}
\phi_k^a(\mathbf{r})
\nabla^2 \phi_k^a(\mathbf{r}) +
\int_{r<r_c^a}d\mathbf{r}
\int_{r'<r_c^a}d\mathbf{r}'
\frac{\rho^a(\mathbf{r}')
[\phi_k^a(\mathbf{r})]^2 }
{|\mathbf{r} - \mathbf{r}'|} +
\int_{r<r_c^a}d\mathbf{r}
\frac{\delta E_{\text{xc}}[n(\mathbf{r})]}
{\delta n} [\phi_k^a(\mathbf{r})]^2\]